Unification of Program Expressions with Recursive Bindings

Manfred Schmidt-Schauß and David Sabel†

Goethe-University Frankfurt am Main, Germany

PPDP 2016, Edinburgh, UK

†Research supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SA 2908/3-1.
Unification as a core procedure for

- automated reasoning on programs and program transformations w.r.t. operational semantics
- for program calculi with higher-order constructs and recursive bindings, e.g.

\[
\text{letrec } x_1 = s_1; \ldots; x_n = s_n \text{ in } t
\]

- special focus: extended call-by-need lambda calculi with letrec that model core languages of lazy functional programming languages like Haskell
Program transformation T is **correct** iff $\forall \ell \rightarrow r \in T: \forall C: C[\ell] \downarrow \iff C[r] \downarrow$
where \downarrow = successful evaluation w.r.t. standard reduction

Diagram-based proof method to show correctness of transformations:
- Compute **overlaps** between **standard reductions** and **program transformations** (automatable by unification)
- Join the overlaps \Rightarrow forking and commuting diagrams
- Induction using the diagrams (automatable, see [RSSS12, IJCAR])
Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
\[A ::= \cdot \mid (A \ e) \]
\[R ::= A \mid \text{letrec } Env \text{ in } A \mid \text{letrec } \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, Env, \text{ in } A[x_1] \]

Standard-reduction rules and some program transformations

(SR,\!ibeta) \[R[(\lambda x. e_1) \ e_2] \rightarrow R[\text{letrec } x = e_2 \text{ in } e_1] \]

(SR,\!llet) \[\text{letrec } Env_1 \text{ in letrec } Env_2 \text{ in } e \rightarrow \text{letrec } Env_1, Env_2 \text{ in } e \]

(T,\!cpx) \[T[\text{letrec } x = y, Env \text{ in } C[x]] \rightarrow T[\text{letrec } x = y, Env \text{ in } C[y]] \]

(T,\!gc) \[T[\text{letrec } Env \text{ in } e] \rightarrow T[e] \text{ if } \text{LetVars}(Env) \cap \text{FV}(e) = \emptyset \]
Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
\[A ::= [\cdot] \mid (A \ e) \]
\[R ::= A \mid \text{letrec } Env \text{ in } A \mid \text{letrec } \{ x_i = A_i[x_{i+1}] \}_{i=1}^{n-1}, x_n = A_n, Env, \text{in } A[x_1] \]

Standard-reduction rules and some program transformations

(SR,lbeta) \[R[(\lambda x. e_1) e_2] \rightarrow R[\text{letrec } x = e_2 \text{ in } e_1] \]
(SR,llet) \[\text{letrec } Env_1 \text{ in letrec } Env_2 \text{ in } e \rightarrow \text{letrec } Env_1, Env_2 \text{ in } e \]
(T,cpx) \[T[\text{letrec } x = y, Env \text{ in } C[x]] \rightarrow T[\text{letrec } x = y, Env \text{ in } C[y]] \]
(T,gc) \[T[\text{letrec } Env \text{ in } e] \rightarrow T[e] \quad \text{if LetVars}(Env) \cap FV(e) = \emptyset \]

Meta-syntax must be capable to represent:
- contexts of different classes
- environments \(Env_i\),
- environment chains \(\{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}\)
Design Decisions for the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
\[A ::= [\cdot] | (\lambda x. e) \]
\[R ::= A | \text{letrec} \ Env \text{ in } A | \text{letrec} \{ x_i = A_i[x_{i+1}] \}_{i=1}^{n-1}, x_n = A_n, \text{Env, in } A[x_1] \]

Standard-reduction rules and some program transformations

(SR,\!l\!beta) \quad R[(\lambda x. e_1) e_2] \rightarrow R[\text{letrec } x = e_2 \text{ in } e_1]

(SR,\!l\!let) \quad \text{letrec } Env_1 \text{ in letrec } Env_2 \text{ in } e \rightarrow \text{letrec } Env_1, Env_2 \text{ in } e

(T,\!cpx) \quad T[\text{letrec } x = y, \text{Env in } C[x]] \rightarrow T[\text{letrec } x = y, \text{Env in } C[y]]

(T,\!gc) \quad T[\text{letrec } Env \text{ in } e] \rightarrow T[e] \quad \text{if } \text{LetVars}(Env) \cap \text{FV}(e) = \emptyset

Meta-syntax must be capable to represent:

- contexts of different classes
- environments \(Env_i \),
- environment chains \(\{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1} \)
Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
\[
A ::= \cdot \mid (A \ e)
\]
\[
R ::= A \mid \text{letrec } Env \text{ in } A \mid \text{letrec } \{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n = A_n, Env, \text{ in } A[x_1]
\]

Standard-reduction rules and some program transformations

(SR,lbeta) \(R[(\lambda x.e_1) \ e_2] \rightarrow R[\text{letrec } x = e_2 \text{ in } e_1] \)

(SR,llet) \(\text{letrec } Env_1 \text{ in letrec } Env_2 \text{ in } e \rightarrow \text{letrec } Env_1, Env_2 \text{ in } e \)

(T,cpx) \(T[\text{letrec } x = y, Env \text{ in } C[x]] \rightarrow T[\text{letrec } x = y, Env \text{ in } C[y]] \)

(T,gc) \(T[\text{letrec } Env \text{ in } e] \rightarrow T[e] \text{ if LetVars}(Env) \cap FV(e) = \emptyset \)

Meta-syntax must be capable to represent:

- contexts of different classes
- environments \(Env_i \),
- environment chains \(\{x_i = A_i[x_{i+1}]\}_{i=1}^{n-1} \)
Design Decisions for the Meta-Syntax

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
\[A ::= \cdot | (A \, e) \]
\[R ::= A | \text{letrec Env in } A | \text{letrec } \{ x_i = A_i[x_{i+1}] \}_{i=1}^{n-1}, x_n = A_n, \text{Env}, \text{in } A[x_1] \]

Standard-reduction rules and some program transformations

- (SR,lbeta) \[R[(\lambda x.e_1) \, e_2] \rightarrow R[\text{letrec } x = e_2 \, \text{in } e_1] \]
- (SR,llet) \[\text{letrec Env}_1 \, \text{in letrec Env}_2 \, \text{in } e \rightarrow \text{letrec Env}_1, \text{Env}_2 \, \text{in } e \]
- (T,cpx) \[T[\text{letrec } x = y, \text{Env in } C[x]] \rightarrow T[\text{letrec } x = y, \text{Env in } C[y]] \]
- (T,gc) \[T[\text{letrec Env in } e] \rightarrow T[e] \quad \text{if } \text{LetVars(Env)} \cap \text{FV}(e) = \emptyset \]

Meta-syntax must be capable to represent:

- contexts of different classes
- environments \(\text{Env}_i \),
- environment chains \(\{ x_i = A_i[x_{i+1}] \}_{i=1}^{n-1} \)
Syntax of the Meta-Language LRSX

Variables

$x \in \text{Var} ::= X$

- (variable meta-variable)

- x
 - (concrete variable)

Expressions

$s \in \text{Expr} ::= S$

- (expression meta-variable)

- $D[s]$
 - (context meta-variable)

- \text{letrec } env \text{ in } s$
 - (letrec-expression)

- \text{var } x$
 - (variable)

- $(f \ r_1 \ldots r_{ar(f)})$
 - (function application)

 where r_i is o_i, s_i, or x_i specified by f

Environments

$env \in \text{Env} ::= \emptyset$

- (empty environment)

- $E; env$
 - (environment meta-variable)

- $Ch[x, s]; env$
 - (chain meta-variable)

- $x.s; env$
 - (binding)
Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
\[A ::= [\cdot] \mid (A \ e) \]
\[R ::= A \mid \text{letrec } Env \ in \ A \mid \text{letrec } \{x_i=A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n=A_n, Env, \ in \ A[x_1]\]

Standard-reduction rules and some program transformations

(SR,\beta) \quad R[(\lambda x.e_1) e_2] \to R[\text{letrec } x = e_2 \ in \ e_1]
(SR,\lambda l) \quad \text{letrec } Env_1 \ in \ \text{letrec } Env_2 \ in \ e \to \text{letrec } Env_1, Env_2 \ in \ e
(T,\text{cpx}) \quad T[\text{letrec } x = y, Env \ in \ C[x]] \to T[\text{letrec } x = y, Env \ in \ C[y]]
(T,\text{gc}) \quad T[\text{letrec } Env \ in \ e] \to T[e] \quad \text{if LetVars}(Env) \cap FV(e) = \emptyset

Unification-problems have to treat (implicit) restrictions on scoping and emptiness, e.g.:

- (gc): Env must not be empty; side condition on variables,
- (llet): \(FV(Env_1) \cap \text{LetVars}(Env_2) = \emptyset \)
- (cpx): \(x, y \) are not captured by \(C \) in \(C[x] \)
Binding and Scoping Constraints

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
\[A ::= \cdot \mid (A \ e) \]
\[R ::= A \mid \text{letrec } Env \ \text{in } A \mid \text{letrec } \{x_1=A_i[x_{i+1}]\}_{i=1}^{n-1}, x_n=A_n, Env, \text{in } A[x_1] \]

Standard-reduction rules and some program transformations

(SR,\lambda\beta) \quad R[(\lambda x.e_1) \ e_2] \to R[\text{letrec } x = e_2 \ \text{in } e_1]

(SR,\lambda\letrec) \quad \text{letrec } Env_1 \ \text{in } \text{letrec } Env_2 \ \text{in } e \to \text{letrec } Env_1, Env_2 \ \text{in } e

(T,\text{cpx}) \quad T[\text{letrec } x = y, Env \ \text{in } C[x]] \to T[\text{letrec } x = y, Env \ \text{in } C[y]]

(T,\text{gc}) \quad T[\text{letrec } Env \ \text{in } e] \to T[e] \quad \text{if } \text{LetVars}(Env) \cap \text{FV}(e) = \emptyset

Unification-problems have to treat (implicit) restrictions on scoping and emptiness, e.g.:

- (gc): \(Env \) must not be empty; side condition on variables,
- (llet): \(\text{FV}(Env_1) \cap \text{LetVars}(Env_2) = \emptyset \)
- (cpx): \(x, y \) are not captured by \(C \) in \(C[x] \)
Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
\[A ::= [\cdot] \mid (A \ e) \]
\[R ::= A \mid \text{letrec } Env \text{ in } A \mid \text{letrec } \{ x_i = A_i[x_{i+1}] \}_{i=1}^{n-1}, x_n = A_n, Env, \text{ in } A[x_1] \]

Standard-reduction rules and some program transformations

(SR,\text{Ibeta}) \ R[(\lambda x. e_1) \ e_2] \rightarrow R[\text{letrec } x = e_2 \text{ in } e_1]
(SR,\text{Ilet}) \ \text{letrec } Env_1 \text{ in letrec } Env_2 \text{ in } e \rightarrow \text{letrec } Env_1, Env_2 \text{ in } e
(T,\text{cpx}) \ T[\text{letrec } x = y, Env \text{ in } C[x]] \rightarrow T[\text{letrec } x = y, Env \text{ in } C[y]]
(T,\text{gc}) \ T[\text{letrec } Env \text{ in } e] \rightarrow T[e] \quad \text{if LetVars}(Env) \cap \text{FV}(e) = \emptyset

Unification-problems have to treat (implicit) restrictions on scoping and emptiness, e.g.:

- (gc): \(Env \) must not be empty; side condition on variables,
- (Ilet): \(\text{FV}(Env_1) \cap \text{LetVars}(Env_2) = \emptyset \)
- (cpx): \(x, y \) are not captured by \(C \) in \(C[x] \)
Binding and Scoping Constraints

Operational semantics of typical call-by-need calculi (excerpt)

Reduction contexts:
\[A ::= \cdot | (A \, e) \]
\[R ::= A \mid \text{letrec } Env \, \text{in } A \mid \text{letrec } \{ x_i = A_i[x_{i+1}] \}_{i=1}^{n-1}, x_n = A_n, Env, \, \text{in } A[x_1] \]

Standard-reduction rules and some program transformations

(SR,\lbeta) \[R[(\lambda x. e_1) \, e_2] \rightarrow R[\text{letrec } x = e_2 \, \text{in } e_1] \]
(SR,\llet) \[\text{letrec } Env_1 \, \text{in } \text{letrec } Env_2 \, \text{in } e \rightarrow \text{letrec } Env_1, Env_2 \, \text{in } e \]
(T,\cpx) \[T[\text{letrec } x = y, Env \, \text{in } C[x]] \rightarrow T[\text{letrec } x = y, Env \, \text{in } C[y]] \]
(T,\gc) \[T[\text{letrec } Env \, \text{in } e] \rightarrow T[e] \quad \text{if } \text{LetVars}(Env) \cap \text{FV}(e) = \emptyset \]

Unification-problems have to treat (implicit) restrictions on scoping and emptiness, e.g.:

- (gc): \(Env \) must not be empty; side condition on variables,
- (llet): \(\text{FV}(Env_1) \cap \text{LetVars}(Env_2) = \emptyset \)
- (cpx): \(x, y \) are not captured by \(C \) in \(C[x] \)
A letrec unification problem is a tuple $P = (\Gamma, \Delta_1, \Delta_2, \Delta_3)$ with

- Γ: unification equations $s \equiv s'$
- Δ_1: non-empty contexts (set of D-variables)
- Δ_2: non-empty environments (set of E-variables)
- Δ_3: non-capture constraints (set of (expression,context)-pairs)

Occurrence restrictions:

- Each S-variable occurs at most twice in Γ
- Each E-, Ch-, D-variable occurs at most once in Γ
- Ch-variables are only allowed in one letrec-environment in Γ
Unifier and Solution of $P = (\Gamma, \Delta_1, \Delta_2, \Delta_3)$

A substitution ρ is a \textbf{unifier of} P iff

1. $\rho(s) \sim_{let} \rho(s')$ for all $s \equiv s' \in \Gamma$
2. $\rho(D) \neq [\cdot]$ for all $D \in \Delta_1$ and $\rho(E) \neq \emptyset$ for all $E \in \Delta_2$
3. $\text{Var}(\rho(s)) \cap \text{CV}(\rho(d)) = \emptyset$ for all $(s, d) \in \Delta_3$

A unifier ρ is a \textbf{solution of} P if ρ is a ground substitution.

$\sim_{let} =$ syntactic equality upto permuting bindings in environments

$\text{CV}(d) =$ variables that are captured by the hole of context d
Unifier and Solution of $P = (\Gamma, \Delta_1, \Delta_2, \Delta_3)$

A substitution ρ is a **unifier of** P iff

- $\rho(s) \sim_{let} \rho(s')$ for all $s \equiv s' \in \Gamma$
- $\rho(D) \neq \emptyset$ for all $D \in \Delta_1$ and $\rho(E) \neq \emptyset$ for all $E \in \Delta_2$
- $\text{Var}(\rho(s)) \cap \text{CV}(\rho(d)) = \emptyset$ for all $(s, d) \in \Delta_3$

A unifier ρ is a **solution of** P if ρ is a ground substitution.

$\sim_{let} = \text{syntactic equality upto permuting bindings in environments}$

$\text{CV}(d) = \text{variables that are captured by the hole of context } d$

Theorem (NP-Hardness)

The decision problem whether a solution for a letrec unification problem exists is NP-hard.

Proof by a reduction from **Monotone one-in-three-3-SAT**.
Intermediate **data structure** of the algorithm: \((Sol, \Gamma, \Delta)\) where

- **Sol** is a computed substitution
- **\(\Gamma\)** is a set of equations
- \(\Delta = (\Delta_1, \Delta_2, \Delta_3, \Delta_4)\)
- \((\Delta_1, \Delta_2, \Delta_3)\) are constraints as in a letrec unification problem
- \(\Delta_4\) are environment equations \(E_1; \ldots; E_n = Ch[x, s]\)

Input:

For \(P = (\Gamma, \Delta_1, \Delta_2, \Delta_3)\), UnifLRS starts with \((Id, \Gamma, (\Delta_1, \Delta_2, \Delta_3, \emptyset))\)

Output (on each branch):

Fail or final state \((Sol, \emptyset, \Delta)\)
Inference rules of the form

$$P \quad \frac{P_1 | \ldots | P_n}{\quad}$$

Four kinds of rules:

- First-order rules
- Rules for environment equations
- Rules for equations $D[s] \doteq s'$
- Failure rules

Rule application is non-deterministic:

- don’t care non-determinism between the rules
- don’t know non-determinism between $P_1 | \ldots | P_n$
Selection of Rules (1)

\[(\text{Sol}, \Gamma \cup \{ x \doteq x \}, \Delta) \]

\[(\text{Sol}, \Gamma, \Delta) \]

\[(\text{Sol}, \Gamma \cup \{ S \doteq s \}, \Delta) \]

\[(\text{Sol} \circ \{ S \mapsto s \}, \Gamma[s/S], \Delta[s/S]) \]

if \(S \) is not a proper sub-expression of \(s \)

\[(\text{Sol}, \Gamma \cup \{ \text{letrec } \text{env}_1 \text{ in } s_1 \doteq \text{letrec } \text{env}_2 \text{ in } s_2 \}, \Delta) \]

\[(\text{Sol}, \Gamma \cup \{ \text{env}_1 \doteq \text{env}_2, s_1 \doteq s_2 \}, \Delta) \]
Unifying bindings and chains:

\[(Sol, \Gamma \cup \{x.t; env_1 \models Ch[y, s]; env_2\}, \Delta)\]

\[(Sol \circ \sigma, \Gamma \cup \{x.t \models y.D[s], env_1 \models env_2\}, \Delta_\sigma)\]

\[\sigma = \{Ch[y, s] \mapsto y.D[s]\}\]

“equal”

\[(Sol \circ \sigma, \Gamma \cup \{x.t \models y.D[\text{var} Y], env_1 \models Ch_2[Y, s]; env_2\}, \Delta_\sigma)\]

\[\sigma = \{Ch_1[y, s] \mapsto y.D[\text{var} Y]; Ch_2[Y, s]\}\]

“prefix”

\[(Sol \circ \sigma, \Gamma \cup \{x.t \models Y_1.D[\text{var} Y_2], env_1 \models Ch_1[y, \text{var} Y_1]; Ch_2[Y_2, s]; env_2\}, \Delta_\sigma)\]

\[\sigma = \{Ch[y, s] \mapsto Ch_1[y, (\text{var} Y_1)]; Y_1.D[\text{var} Y_2]; Ch_2[Y_2, s]\}\]

“infix”

\[(Sol \circ \sigma, \Gamma \cup \{x.t \models Y_1.D[s], env_1 \models Ch_2[y, \text{var} Y_1]; env_2, \Delta_\sigma\})\]

\[\sigma = \{Ch_1[y, s] \mapsto Ch_2[y, \text{var} Y_1]; Y_1.D[s]\}\]

“suffix”
Keep chain-equations as constraints

$$(\text{Sol}, \Gamma \cup \{E_1; \ldots; E_n \doteq Ch[y, s]\}, (\Delta_1, \Delta_2, \Delta_3, \Delta_4))$$

$$(\text{Sol}, \Gamma, (\Delta_1, \Delta_2, \Delta_3, \Delta_4 \cup \{E_1; \ldots; E_n \doteq Ch[y, s]\}))$$
Selection of Failure Rules

Standard cases:

\[
(Sol, \Gamma \cup \{(x_1 \equiv x_2)\}, \Delta) \\
Fail
\]

\[
(Sol, \Gamma \cup \{(S \equiv s)\}, \Delta) \\
Fail \quad \text{if } S \text{ is a proper subterm of } s
\]

Checking non-capture constraints:

\[
(Sol, \Gamma, (\Delta_1, \Delta_2, \Delta_3 \cup \{(s, d)\}, \Delta_4)) \\
Fail \quad \text{if } \text{Var}(s) \cap \text{CV}(d) \neq \emptyset
\]
For a final state \((Sol, \emptyset, \Delta)\) satisfiability of \(\Delta_4\) is checked:

Guess an instantiation \(\sigma\) for all \(E_1; \ldots; E_n \vdash Ch[y, s] \in \Delta_4\) s.t.

- \(\sigma(Ch[y, s]) = y.D_1[Y_1]; Y_1.D_2[Y_2]; \ldots; Y_k.D_{k+1}[s]\)
- \(\sigma(E_i) \subseteq \{y.D_1[Y_1]; Y_1.D_2[Y_2]; \ldots; Y_k.D_{k+1}[s]\}\) and \(\sigma(E_i) \neq \emptyset\) if \(E_i \in \Delta_2\)
- \(\sigma(E_1; \ldots; E_n) \sim_{\text{let}} \sigma(Ch[y, s])\)
- all non-capture constraints in \(\Delta_3\sigma\) are valid

Deliver Fail if no such instantiation exists.
Satisfiability Check of Constraint Equations

For a final state \((Sol, \emptyset, \Delta)\) satisfiability of \(\Delta_4\) is checked:

Guess an instantiation \(\sigma\) for all \(E_1; \ldots; E_n \vdash Ch[y, s] \in \Delta_4\) s.t.

- \(\sigma(Ch[y, s]) = y.D_1[Y_1]; Y_1.D_2[Y_2]; \ldots; Y_k.D_{k+1}[s]\)
- \(\sigma(E_i) \subseteq \{y.D_1[Y_1]; Y_1.D_2[Y_2]; \ldots; Y_k.D_{k+1}[s]\}\) and \(\sigma(E_i) \neq \emptyset\) if \(E_i \in \Delta_2\)
- \(\sigma(E_1; \ldots; E_n) \sim \text{let } \sigma(Ch[y, s])\)
- all non-capture constraints in \(\Delta_3\sigma\) are valid

Deliver Fail if no such instantiation exists.

Key Lemma

It suffices to test only those \(k\) with \(k + 1 \leq M_1^2 \ast (M_2 + 1) + M_2\)
where \(M_1 = |\Delta_2 \cap \{E_1; \ldots; E_n\}|\) and \(M_2 = n - M_1\).
Thus, the \(\Delta_4\)-check can be done in nondeterministic polynomial time.
Proposition (Soundness)

For input P and successful output (Sol, \emptyset, Δ):
- All ground instances of Sol that do not violate Δ are solutions of P.
- There exists at least one ground instance of Sol which solves P.

Proposition (Completeness)

For any solution ρ of a letrec unification problem P there exists a final state (Sol, \emptyset, Δ) of UnifLRS s.t. ρ is an instance of Sol.

Theorem

UnifLRS is sound and complete.
Complexity of UnifLRS

Theorem

UnifLRS terminates in nondeterministic polynomial time and solutions are of polynomial size.

Corollary

The letrec unification problem is NP-complete.
Computing Overlaps with UnifLRS

Implementation available from http://goethe.link/lrsx

- unification of expressions
- calculus descriptions as input for computing overlaps

Experiments with two call-by-need calculi:

- \(L_{need} \): lambda calculus plus letrec
- LR: \(L_{need} \) + data constructors + case expressions + seq-expressions
- overlaps for 11 transformations w.r.t. all standard reduction rules

Statistics:

<table>
<thead>
<tr>
<th></th>
<th>Calculus (L_{need})</th>
<th>Calculus LR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>forking</td>
<td>commuting</td>
</tr>
<tr>
<td>number of standard rules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of critical pairs</td>
<td>1741</td>
<td>2156</td>
</tr>
<tr>
<td>execution time (sec.)</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Conclusion

- Sound and complete unification algorithm for program calculi with recursive bindings
- Letrec unification problem is NP-complete
- Automated computation of overlaps for call-by-need core languages is possible
Conclusion

- Sound and complete unification algorithm for program calculi with recursive bindings
- Letrec unification problem is NP-complete
- Automated computation of overlaps for call-by-need core languages is possible

Further work:

- **Join the critical pairs**: Requires matching-algorithm, but also handling of the \((\Delta_1, \Delta_2, \Delta_3, \Delta_4)\)-constraints, and probably some kind of meta alpha-renaming

- **Equivalence of different reductions strategies**: computing overlaps requires to unify chain-variables

 \((Ch_1[y, s] \equiv Ch_2[y', s']) \)